
Technical Support | February 2005

Automated Legacy
Execution

By B i l l Swe e n ey

I began working as an MVS System Programmer in 1981, while in the
U.S. Army, assigned to the Department of Defense. I was trained by

an excellent group of experienced System Programmers, who also
taught me Assembly language programming. I was told that if you
were able to program in Assembler, you would have a better under-
standing of the operating system and its components. Back then we had
the source for MVS on reel tapes, and you could browse it to try and
better understand the workings of MVS.

Automation on MVS consists of a few key components. The ability to
trap messages is made easier through the use of the WTO exits. JES2
automatic command processing allows for time of day as well as interval
processing for issuing commands and starting tasks. REXX as a high-
level language provides a convenient method for performing System
Programming type functions at a faster rate. The TSO CONSOLE com-
mand with REXX allows you to perform as an Operator, and to take
action based on a particular situation. Combining these functions with
some Assembler programs makes for a workable automation system.

Most of the Assembler code that I have written through the years has
been more in the way of utility programs rather than application pro-
grams; programs geared toward improving the current environment or
in expediting the migration to a new system. The automation of tasks
and processes has been a specific area that I have been involved with
in many organizations. I started in the 1980's with a program that
initially would issue MVS commands using SVC 34, and continued
to enhance this single program to perform other functions. I later wrote
a Write to Operator (WTO) exit to trap messages and then use REXX
to process these messages. As MVS advanced and provided more
functionality, I was able to take advantage of these new functions and
automate the system even more.

I replaced an off the shelf automation product with the utilities and
procedures that I have developed, which are now running on a z/OS
R1.4 system. The system is called ALEX, for Automated Legacy
EXecution, and is named after my youngest child. The replacement was
not on a large mainframe system, but on a smaller mainframe running a

single production LPAR. With that said, I will describe the components
of the system, and try to provide some detail as to how it all works.

The main component of ALEX uses the IBM supplied Installation
Exit IEAVMXIT (described in detail in the IBM manual, Installation
Exits, SC28-1753-05) as the vehicle for capturing and processing mes-
sages. IEAVMXIT gets control for every WTO and Write to Operator
with Reply (WTOR) that is issued on an MVS system, as well as MVS
commands. The IEAVMXIT exit program used by ALEX consists of
two parts, which include: the executable code that performs a particular
action and a Message Table that defines what messages to process, and
how to process them. The executable portion of the exit is never modi-
fied, so the introduction of errors into the exit are minimized. The
Message Table is link-edited directly with the IEAVMXIT exit program.

Even though IEAVMXIT is invoked for every WTO/WTOR issued by
MVS, the impact on the operating system and applications is minimal.
The exit searches through the coded Message Table using the system
supplied message, and if no match is found then IEAVMXIT exits with-
out having performed any other functions (e.g. GETMAIN to acquire
storage). Further filtering is built into the Message Table entries to either
select or exclude a message based on a search argument or a particular
JOB name. All efforts have been made to build efficiency, functionality
and flexibility into this one exit.

The use of the IEAVMXIT exit, coupled with how you define the
messages to be processed, will allow you to perform automation of
activities on your system. The ALEX IEAVMXIT will perform certain
functions directly from the exit, to include: reply to outstanding
WTORs, suppress messages, highlight messages, process multi-line
WTOs, and issue commands directly to MVS. In the instances where
further processing is necessary, the exit will issue an MVS START
command, and pass the message to a Started Task (STC). The STC will
then invoke a REXX EXEC to process the message.

An ISPF/REXX interface to define the messages that you wish to
process and automate by IEAVMXIT was developed with the system,
and allows you to dynamically add your requests. The ISPF/REXX

©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

interface consists of the REXX EXEC
ALXREXT, ISPF panels and messages, and a
batch job to assemble, link and refresh the
IEAVMXIT exit.

See FIGURE 1 for an example of the ISPF
panel.

You can get an idea as to what is available
for your message selection criteria, and the
actions you can take by looking at the above
panel. This panel will process multiple mes-
sage requests. When complete, it will submit a
job to assemble and link the MSGTABLE
component, and then refresh the IEAVMXIT
exit. Once refreshed, the messages added can
be processed immediately, if the message is
issued. There is a MESSAGE Macro included
with the system that builds the internal struc-
ture of the message to be processed by
IEAVMXIT.

In the event that the message cannot be han-
dled within the exit, an MVS command is
issued to start a task to process the message.
The default STC name is OPSAUTO, and the
first eight characters of the Message ID will be
the name of a REXX EXEC to handle this
message. OPSAUTO uses the IKJEFT01 TSO
batch program, and the message to be
processed is passed as symbolic parameters.

There are two limitations in the system.
The issuance of multiple MVS START com-
mands could flood a system if the same
message is issued repetitively (e.g. 100
times a second). The exit has a built-in facility
to not process the same message within a
three second hard-coded limit. The other
limitation in the system is that the MVS
commands are limited to a maximum of 126
characters. The message passed, to include
the S OPSAUTO, is truncated at 126 charac-
ters, so some information from the message
passed could be lost. The exit will include
the JOBNAME at the end of the message, if
there is enough room.

The following is an example of the MVS
START command issued for a message
processed by IEAVMXIT:

S OPSAUTO,M1='DFHKE179 DFHKE1799 PROD

TERMINATION OF CICS IS',M2='COMPLETE.

J=PROD'

The message ID processed, DFHKE1799 is
truncated to eight characters, and the SYSEX-
EC DD statement defined in the OPSAUTO
STC contains a REXX EXEC named
DFHKE179. The DFHKE179 REXX EXEC
then processes this message and performs
whatever action is necessary. This automation

system, like many others, relies heavily on the
use of REXX. The replacement of the off the
shelf package was possible because the exist-
ing REXX EXEC was written to support
message processing, and required very little
modification to work with ALEX.

It is possible to use REXX as an automation
tool to function like an Operator with the use
of the TSO CONSOLE command. The CON-
SOLE command allows you to issue MVS
commands, and process the output of these
MVS commands. The CONSOLE command
requires definition to your security system,
and should be limited to the OPSAUTO
assigned Userid, and the personnel assigned to
testing and defining messages to ALEX.
REXX supplies the GETMSG function to
process the output of commands issued using
the CONSOLE command.

The following RACF commands are being
used at one installation to establish access to
the TSO CONSOLE command as part of their
Disaster Recovery (DR) procedures. The first
RACF command, RDEF, actually comes back

as being already defined at the DR location.
The RACF commands are:

RDEF TSOAUTH CONSOLE OWNER(SYS1)

UACC(NONE)

ALU Userid OPERPARM(ROUTCODE(ALL)

AUTH(ALL))

PERMIT CONSOLE CLASS(TSOAUTH) ID(Userid)

ACCESS(READ)

SETR RACLIST(TSOAUTH) REFRESH

To further enhance the use of REXX I
began writing Assembler REXX functions
in the mid 1990's. I was doing analysis work
for a DR contract, and had tried using
REXX as a tool for performing the analysis.
When it took over 20 hours to process all the
data I realized that it was not practical to
rely exclusively on REXX for this project
and rewrote some of the analysis software in
Assembler. It then ran in less than 30 min-
utes. After this project I started writing the
Assembler REXX functions to address inef-
ficiencies in REXX.

Technical Support | February 2005 ©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

------------------ Automated Operations ------------------
OPTION==>

Add WTO/WTOR Messages for Automated Operations Processing

Message ID ==>
Enter up to 20 characters of the Message you wish to process

Action to Perform ==> Highlite RED (Y/N) ==>
Valid Actions are REPLY, COMMAND, EXEC, EVENT or HIGHLITE

Reply ==>
If Action was REPLY then specify the REPLY to the Message

Command ==>
If Action was COMMAND then specify the COMMAND to issue

Search Argument ==>
(Single Quotes not allowed in Search Argument; Case sensitive)

Select if Argument Found => Select if Argument JOBNAME =>

Process Multi-Line WTO (Y/N/A) ==>

PF1 - Help/Description of Facility PF3 - End/Assemble PF4 - Cancel/NoUpdate

FIGURE 1: ISPF PANEL

* Shutdown test CICS and then wait 10 seconds
F CICSTEST,CEMT PERF SHUT

#WAIT=10
* Check to see if CICSTEST is running and wait another 30 seconds
%STRT=CICSTEST;#WAIT=30
* Check to see if CICSTEST is running and issue next command
%STRT=CICSTEST;F CICSTEST,CEMT PERF SHUT IMM
* If still running wait another 60 seconds
%STRT=CICSTEST;#WAIT=60
* If still running then cancel
%STRT=CICSTEST;C CICSTEST

FIGURE 2: HOW ALEXCMDS CAN BE USED TO SHUTDOWN A CICS REGION

The following Assembler REXX functions are available with ALEX,
to include:

ALXRWTO—issue un-highlighted and highlighted WTOs. Options
are ‘ROLL’ to roll off the console, ‘NOROLL’ highlighted white, and
‘NOROLLRED’ as highlighted red.

WTOMSG = ‘Test WTO message’
OK = ALXRWTO(WTOMSG,’ROLL’)

ALXRWTOR—issue a WTOR, and provide an automatic reply after
a specified time. The first argument is the WTOR, second argument is
the max length of the reply, the third argument is the timeout value, and
the fourth argument is the reply if the timeout value is reached.

WTORMSG = ‘Reply Y or N if you wish to continue’
GREPLY1 = ALXRWTOR(WTORMSG,3,30,'Y')

ALXRDOZE—wait for a specified number of seconds
OK = ALXRDOZE(30)

ALXRDASD—return all DASD or TAPE UCBs with status informa-
tion

ALXRQSCN—uses GQSCAN to return all enqueues

PDS Processing—various functions available for processing PDS files
to include: reading directory entries, reading a member, writing a mem-
ber, renaming, scratching or defining an ALIAS for a member. In some
of the Assembler REXX functions the IBM supplied IRXEXCOM is
used to assist in the storing and fetching of REXX variables. The sub-
routine ALXEXCOM is supplied to assist in the setup and invocation
of IRXEXCOM.

The final component used in ALEX is the ALEXCMDS utility. I
originally wrote this program during the mid 1980's to issue MVS com-
mands using SVC 34. The program requires Authorized Program
Facility (APF) authorization and placement in an APF authorized
library. It uses control card input to determine what processing to per-
form. ALEXCMDS has been modified through the years to support
other functions, including: issue highlighted and un-highlighted
WTOs, reply to outstanding WTORs, search the Address Space
Control Blocks (ASCBs) for a specific address space, issue STIMER
waits, call IRXJCL to process a REXX EXEC, and perform simple
scheduling using date and time processing and JES2 automatic com-
mands. The simple scheduling component is rarely, if ever used,
because almost all data centers have an Independent Software Vendor
(ISV) scheduler product.

The ALEXCMDS program is used by a few data centers in the
Washington, D.C. area. It is used to handle processing at IPL startup
and at system shutdown. The ALEX automated operations system will
use ALEXCMDS when it is convenient or at times when there are
problems with the TSO CONSOLE command. It is a versatile program,
with simple input, driven by specific information in column one. If
there is no data in column one, or if there is not a valid ALEXCMDS
character in column one, then control card is passed directly to the sys-
tem as a command. The letter 'C' in column 72 allows for a single line

continuation for MVS commands only (remember, an MVS command
cannot exceed 126 characters).

Provided in FIGURE 2 are some control card examples as to how
ALEXCMDS could be used to shutdown a CICS region. The asterisk
in column one is treated as a comment by ALEXCMDS.

.
If CICSTEST were not running, then the first command wouldn't do

anything and the first 10 second wait would be the only time taken. It
is important that you understand your own system, and have reviewed
SYSLOG data to determine valid time limits for your system. Once you
understand the valid times, you can code the control cards for ALEX-
CMDS and use it during IPL startup or at shutdown.

The final item in ALEX is security. I have been able to get ALEX to
work on z/OS R1.4, using both IBM® RACF© and Computer
Associates® (CA) Top Secret©. CA supplies an option in their web
support interface to ask questions about implementation. CA Top
Secret was very helpful in providing the specific commands to help get
the TSO CONSOLE command to work, and with some other automa-
tion questions. IBM was also helpful through the years dealing with
RACF automation issues, and the IEAVMXIT exit facility. I once
worked with an IBM Level 2 person on an IEAVMXIT problem, and
walked through a dump with them. It was impressive as the Level 2
person described what was happening in the subpools.

The IEAVMXIT exit program does contain a RACROUTE
REQUEST=VERIFYX to establish the security token used by the MGCRE
Macro (MGCRE issues SVC 34). The use of REQUEST=VERIFYX on
the MGCRE Macro is documented in the Installation Exits manual for
the IEAVMXIT exit. I encountered problems when processing certain
messages in the IEAVMXIT exit program (e.g. RACF WTOR
ICH302D), that were resolved by coding the RACROUTE
REQUEST=VERIFYX statement.

Getting many of the components to work required trial and error and
a review of source code examples to determine how to accomplish a task.
The SHARE tape and the CBT tape have been invaluable as research and
teaching tools during my career. It has always been helpful being able to
look at code to know exactly how something was done.

I have written many utility type programs, and have been somewhat
remiss at getting them packaged up for the CBT tape. I do have exam-
ples of some of the code at the web site www.sscmainframe.com,
though not the complete ALEX system. It is my intention to have sub-
mitted my software for inclusion on the CBT tape by the time this
article is published.

Bill Sweeney is a Mainframe System Programmer that has been working as
an independent consultant for SSC, Inc. for the past 15 years.

Technical Support | February 2005©2005 Technical Enterprises, Inc. Reproduction of this document without permission is prohibited.

